113 research outputs found

    Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model.

    Get PDF
    Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1\u27s biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application

    Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening.

    Get PDF
    Marker assisted speed congenics technique is commonly used to facilitate backcrossing of mouse strains in nearly half the time it normally takes otherwise. Traditionally, the technique is performed by analyzing PCR amplified regions of simple sequence length polymorphism (SSLP) markers between the recipient and donor strains: offspring with the highest number of markers showing the recipient genome across all chromosomes is chosen for the next generation. Although there are well-defined panels of SSLP makers established between certain pairs of mice strains, they are incomplete for most strains. The availability of well-established marker sets for speed congenic screens would enable the scientific community to transfer mutations across strain backgrounds. In this study, we tested the suitability of over 400 SSLP marker sets among 10 mouse strains commonly used for generating genetically engineered models. The panel of markers presented here can readily identify the specified strains and will be quite useful in marker assisted speed congenic screens. Moreover, unlike newer single nucleotide polymorphism (SNP) array methods which require sophisticated equipment, the SSLP markers panel described here only uses PCR and agarose gel electrophoresis of amplified products; therefore it can be performed in most research laboratories

    De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab

    Get PDF
    Red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) are deep-sea crustaceans widely distributed in the North Pacific and Northwest Atlantic Oceans. These giant predators have invaded the Barents Sea over the past decades, and climate-driven temperature changes may influence their distribution and abundance in the sub-Arctic region. Molting and growth in crustaceans are strongly affected by temperature, but the underlying molecular mechanisms are little known, particularly in cold-water species. Here, we describe multiple regulatory factors in the two high-latitude crabs by developing de novo transcriptomes from the molting gland (Y-organ or YO) and eye stalk ganglia (ESG), in addition to the hepatopancreas and claw muscle of red king crab. The Halloween genes encoding the ecdysteroidogenic enzymes were expressed in YO, and the ESG contained multiple neuropeptides, including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), and ion-transport peptide (ITP). Both crabs expressed a diversity of growth-related factors, such as mTOR, AKT, Rheb and AMPKα, and stress-responsive factors, including multiple heat shock proteins (HSPs). Temperature effects on the expression of key regulatory genes were quantified by qPCR in adult red king crab males kept at 4 °C or 10 °C for two weeks during intermolt. The Halloween genes tended to be upregulated in YO at high temperature, while the ecdysteroid receptor and several growth regulators showed tissue-specific responses to elevated temperature. Constitutive and heat-inducible HSPs were expressed in an inverse temperature-dependent manner, suggesting that adult red king crabs can acclimate to increased water temperatures.publishedVersio

    Nucleic acid and non-nucleic acid-based reprogramming of adult limbal progenitors to pluripotency

    Get PDF
    Reprogramming somatic cells to a pluripotent state by nucleic acid based (NAB) approaches, involving the ectopic expression of transcription factors, has emerged as a standard method. We recently demonstrated that limbal progenitors that regenerate cornea are reprogrammable to pluripotency by a non-NAB approach through simple manipulation of microenvironment thus extending the possible therapeutic use of these readily accessible cells beyond the proven treatment of corneal diseases and injury. Therefore, to determine the validity and robustness of non-cell autonomous reprogramming of limbal progenitors for a wider clinical use, here, we have compared their reprogramming by non-NAB and NAB approaches. We observed that both approaches led to (1) the emergence of colonies displaying pluripotency markers, accompanied by a temporal reciprocal changes in limbal-specific and pluripotency gene expression, and (2) epigenetic alterations of Oct4 and Nanog, associated with the de-novo activation of their expression. While the efficiency of reprogramming and passaging of re-programmed cells were significantly better with the NAB approach, the non-NAB approach, in contrast, led to a regulated reprogramming of gene expression, and a significant decrease in the expression of Hormad1, a gene associated with immunogenic responses. The reprogramming efficiency by non-NAB approach was influenced by exosomes present in conditioned medium. Cells reprogrammed by both approaches were capable of differentiating along the three germ lineages and generating chimeras. The analysis suggests that both approaches are effective in reprogramming limbal progenitors but the non-NAB approach may be more suitable for potential clinical applications by averting the risk of insertional mutagenesis and immune responses associated with the NAB approach

    Human-like NSG Mouse Glycoproteins Sialylation Pattern Changes the Phenotype of Human Lymphocytes and Sensitivity to HIV-1 Infection

    Get PDF
    BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins\u27 chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγ CONCLUSION: NSG-cma

    Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins

    Get PDF
    Background Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Results Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5–100% of the resulting live offspring. Conclusions Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources
    • …
    corecore